Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product

Abstract

Significant progress has been made recently in demonstrating that silicon photonics is a promising technology for low-cost optical detectors, modulators and light sources1,2,3,4,5,6,7,8,9,10,11,12. It has often been assumed, however, that their performance is inferior to InP-based devices. Although this is true in most cases, one of the exceptions is the area of avalanche photodetectors, where silicon's material properties allow for high gain with less excess noise than InP-based avalanche photodetectors and a theoretical sensitivity improvement of 3 dB or more. Here, we report a monolithically grown germanium/silicon avalanche photodetector with a gain–bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of −28 dB m at 10 Gb s−1. This is the highest reported gain–bandwidth product for any avalanche photodetector operating at 1,300 nm and a sensitivity that is equivalent to mature, commercially available III–V compound avalanche photodetectors. This work paves the way for the future development of low-cost, CMOS-based germanium/silicon avalanche photodetectors operating at data rates of 40 Gb s−1 or higher.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of published gain–bandwidth products with respect to the multiplication layer thickness for InP-, InAlAs- and silicon-based APDs.
Figure 2: Schematic (a) and SEM (b) cross–sections of a germanium/silicon APD.
Figure 3: Direct current characteristics of a germanium/silicon APD.
Figure 4: Gain dependence of the excess noise and 3-dB bandwidth of the germanium/silicon APDs.
Figure 5: Back-to-back receiver sensitivity and eye diagram measurements for a 30-µm-diameter germanium/silicon APD receiver measured at 10 Gb s−1.

Similar content being viewed by others

References

  1. Pavesi, L. & Guillot, G. Optical Interconnect: The Silicon Approach (Springer-Verlag, Berlin, 2006).

    Book  Google Scholar 

  2. Reed, G. T. & Knights, A. P. Silicon Photonic: An Introduction (John Wiley & Sons, West Sussex, 2004).

    Book  Google Scholar 

  3. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit s−1 carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  4. Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007).

    Article  ADS  Google Scholar 

  5. Huang, A. et al. A 10 Gb s−1 photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 µm SOI CMOS. Proc. IEEE International Solid-State Circuits Conference, 922–929 (2006).

  6. Morse, M., Dosunmu, O., Sarid, G. & Chetrit, Y. Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules. Proc. SiGe and Ge: Materials, Processing and Devices 3, 75–84 (2006).

    Google Scholar 

  7. Ahn, D. et al. High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916–3921 (2007).

    Article  ADS  Google Scholar 

  8. Dehlinger, G. et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Tech. Lett. 16, 2547–2549 (2004).

    Article  ADS  Google Scholar 

  9. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  10. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  11. Sih, V. et al. Raman amplification of 40 Gb s−1 data in low-loss silicon waveguides. Opt. Express 15, 357–362 (2007).

    Article  ADS  Google Scholar 

  12. Fang, W. et al. Integrated AlGaInAs-silicon evanescent race track laser and photodetector. Opt. Express 15, 2315–2322 (2007).

    Article  ADS  Google Scholar 

  13. Emmons, R. B. Avalanche-photodiode frequency response. J. Appl. Phys. 38, 3705–3714 (1967)

    Article  ADS  Google Scholar 

  14. McIntyre, R. J. The distribution of gains in uniformly multiplying avalanche photodiodes: theory. IEEE Trans. Electron. Dev. ED-19, 703–713 (1972).

    Article  ADS  Google Scholar 

  15. Campbell, J. C., Tsang, W. T. Qua, G. J. & Johnson, B. C. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy. IEEE J. Quant. Electron. 24, 496–500 (1988).

    Article  ADS  Google Scholar 

  16. Yasuoka, N., Kuwatsuka, H. & Makiuchi, M. Large multiplication-bandwidth products in APDs with a thin InP multiplication layer. Proc. 16th IEEE Annual Meeting of LEOS, 999–1000 (2003).

  17. Kinsey, G. S., Campbell, J. C. & Dentai, A. G. Waveguide avalanche photodiode operating at 1.55 µm with a gain–bandwidth product of 320 GHz. IEEE Photon. Tech. Lett. 13, 842–844 (2001).

    Article  ADS  Google Scholar 

  18. Lenox, C. et al. Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz. IEEE Photon. Tech. Lett. 11, 1162–1164 (1999).

    Article  ADS  Google Scholar 

  19. Hawkins, A. R., Wu, W., Abraham, P., Streubel, K. & Bowers, J. E. High gain-bandwidth-product silicon heterointerface photodetector. Appl. Phys. Lett. 70, 303–305 (1996).

    Article  ADS  Google Scholar 

  20. Kang, Y. et al. Fused InGaAs/Si avalanche phototodiodes with low noise performance. IEEE Photon. Tech. Lett. 14, 1593–1595 (2002).

    Article  ADS  Google Scholar 

  21. Clark, W. R. et al. Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s−1 receivers. Proc. Opt. Fiber Commun. 1, 96–98 (1999).

    ADS  Google Scholar 

  22. Franco, D. S. et al. High-performance InGaAs–InP APDs on GaAs. IEEE Photon. Tech. Lett. 17, 873–874 (2005).

    Article  ADS  Google Scholar 

  23. Li, N. et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl. Phys. Lett. 82, 2175–2177 (2003).

    Article  ADS  Google Scholar 

  24. Yagyu, E. et al. Recent advances in AlInAs avalanche photodiodes. Proc. Opt. Fiber Commun. 145–147 (2007).

  25. Nakata, T. et al. An ultra high speed waveguide avalanche photodiode for 40 Gb s−1 optical receiver. Proc. 27th European Conference on Optical Communications 564–565 (2001).

  26. Rouvie, A. et al. High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes. IEEE Photon. Tech. Lett. 20, 455–457 (2008).

    Article  ADS  Google Scholar 

  27. Makita, K., Nakata, T., Watanabe, I. & Taguchi, K. High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes. Electron. Lett. 35, 2228–2229 (1999).

    Article  Google Scholar 

  28. Hayashi, M. et al. Microlens-integrated large-area InAlGaAs–InAlAs superlattice APDs for eye-safety 1.5 µm wavelength optical measurement use. IEEE Photon. Tech. Lett. 10, 576–578 (1998).

    Article  ADS  Google Scholar 

  29. Su, Y. K., Chang, C. Y. & Wu, T. S. Temperature dependent characteristics of a PIN avalanche photodiode (APD) in Ge, Si and GeAs. Opt. Quant. Electron. 11, 109–117 (1979).

    Article  ADS  Google Scholar 

  30. Levine, B. F. et al. −29 dB m sensitivity, InAlAs APD-based receiver for 10 Gb s−1 long-haul (LR-2) applications. Proc. Opt. Fiber Commun. 6, OFM5 (2005).

    Google Scholar 

  31. Ma, C. L. F., Dean, M. J., Tarof, L. E. & Yu, J. C. H. Temperature dependence of breakdown voltages in separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes. IEEE Trans. Electron. Dev. 42, 810–818 (1995).

    Article  ADS  Google Scholar 

  32. Hyun, K.-S. & Park, C.-Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. J. Appl. Phys. 81, 974–984 (1997).

    Article  ADS  Google Scholar 

  33. Fama, S. et al. High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett. 81, 586–588 (2002).

    Article  ADS  Google Scholar 

  34. Koester, S. J. et al. Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers. Proc. 3rd IEEE International Conference on Group IV Photonics, 179–181 (2006).

  35. Kang, Y. et al. Ge/Si avalanche photodiodes for 1.3 µm optical fiber links. Proc. 4th International Conference on Group IV Photonics, 294–296 (2007).

  36. Kang, Y. et al. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 µm light detection. Opt. Express 16, 9365–9371 (2008).

    Article  ADS  Google Scholar 

  37. Liu, Y. et al. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction. J. Lightwave Technol. 10, 182–192 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  38. Pauchard, A. R., Besse, P. A. & Popovic, R. S. Dead space effect on the wavelength dependence of gain and noise in avalanche photodiodes. IEEE Trans. Electron. Dev. 47, 1685–1693 (2000).

    Article  ADS  Google Scholar 

  39. Luan, H.-C. et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909–2911 (1999).

    Article  ADS  Google Scholar 

  40. Halbwax, M. et al. Kinetics of Ge growth at low temperature on Si (001) by ultrahigh vacuum chemical vapor deposition. J. Appl. Phys. 97, 064907 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Defense Advanced Research Projects Agency (DARPA) under contract number HR0011-06-3-0009 and is supervised by J. Shah in the Microsystems Technology Office (MTO) office. The authors thank T. Liu, S. Yeh and C. Xie for assistance in device sensitivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Y., Liu, HD., Morse, M. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon 3, 59–63 (2009). https://doi.org/10.1038/nphoton.2008.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing